1 Rosenzweig-MacArthur consumer-resource model isoclines

Our Lotka-Volterra predator-prey model was one that tracked the rates of gains and losses of prey, V, and predator, P, populations:

$$
\begin{align*}
\frac{\mathrm{d} V}{\mathrm{~d} t} & =\text { prey gains }- \text { prey losses } \\
& =\text { density-independent growth }- \text { consumption of prey proportional to prey density } \\
& =\alpha V-\beta b V P \\
\frac{\mathrm{~d} P}{\mathrm{~d} t} & =\text { predator gains }- \text { predator losses } \\
& =\text { predator gain through prey conversion }- \text { density-independent mortality } \\
& =\gamma V P-\delta P . \tag{1}
\end{align*}
$$

Rosenzweig and MacArthur studied a model that modified two terms: (1) they replaced density-independent growth of prey with logistic/density-dependent growth and (2) they replaced consumption of prey proportional to prey density (type I functional response) with consumption of prey that includes the time it takes predators to handle the prey before returning to searching for prey (type II functional response). The predator-prey/consumer-resource model is now

$$
\begin{align*}
\frac{\mathrm{d} V}{\mathrm{~d} t} & =r V\left(\frac{K-V}{K}\right)-\frac{a V}{1+a h V} P \tag{2}\\
\frac{\mathrm{~d} P}{\mathrm{~d} t} & =c \frac{a V}{1+a h V} P-m P .
\end{align*}
$$

To find the nullclines for each we set each to 0 and algebraically rearrange and plot. For the prey equation, we can first factor out V and we know that $V=0$ is one nullcline. The other factor we can rearrange:

$$
\begin{align*}
0 & =r\left(\frac{K-V}{K}\right)-\frac{a}{1+a h V} P \\
\frac{a}{1+a h V} P & =r\left(\frac{K-V}{K}\right) \\
\frac{1}{1+a h V} P & =\frac{r}{a}\left(\frac{K-V}{K}\right) \\
\frac{1}{1+a h V} P & =\frac{r}{a}\left(\frac{K-V}{K}\right) \tag{3}\\
P & =\frac{r}{a}\left(\frac{K-V}{K}\right)(1+a h V) \\
P & =\left(\frac{r}{a}-\frac{r}{K a} V\right)(1+a h V) \\
P & =-\frac{r h}{K} V^{2}+\left(r h-\frac{r}{K a}\right) V+\frac{r}{a} .
\end{align*}
$$

This nullcline takes a quadratic form, $0=a x^{2}+b x+c$, so we can see that it is a convex parabola whose shape and location changes depending on parameters that affect a, b, or c.

For the predator equation, we can first factor out P and we know that $P=0$ is one nullcline. The other factor we can rearrange:

$$
\begin{align*}
0 & =c \frac{a V}{1+a h V}-m \\
c \frac{a V}{1+a h V} & =m \\
\frac{a V}{1+a h V} & =\frac{m}{c} \\
a V & =\frac{m}{c}(1+a h V) \\
V & =\frac{m}{a c}(1+a h V) \\
V & =\frac{m}{a c}+\frac{m}{a c}(a h V) \tag{4}\\
V-\frac{m}{a c}(a h V) & =\frac{m}{a c} \\
V\left(1-\frac{m a h}{a c}\right) & =\frac{m}{a c} \\
V\left(\frac{a c-m a h}{a c}\right) & =\frac{m}{a c} \\
V & =\frac{m}{a c}\left(\frac{a c}{a c-m a h}\right) \\
V & =\frac{m}{a(c-m h)}
\end{align*}
$$

Here, the predator rate of change is at 0 when $V=$ a combination of constants. This means $V=$ a constant whose location changes depending on parameters in the numerator or denominator (e.g., increasing a will increase the denominator thereby shifting the line toward 0).

Together, the prey nullcline will be a convex parabola and the predator nullcline with be a line.

