How saturated are predator feeding rates?

Kyle E. Coblentz Senior Research Associate University of Nebraska-Lincoln

• "Functional Response" introduced in 1949 by M.E. Solomon

THE NATURAL CONTROL OF ANIMAL POPULATIONS

By M. E. SOLOMON Department of Scientific and Industrial Research, Pest Infestation Laboratory, Slough, Bucks.

• "Functional Response" introduced in 1949 by M.E. Solomon

THE NATURAL CONTROL OF ANIMAL POPULATIONS

By M. E. SOLOMON Department of Scientific and Industrial Research, Pest Infestation Laboratory, Slough, Bucks.

- Solomon distinguished between predator "functional" and "numerical" responses
 - Functional response is the change in predator feeding rates with prey densities
 - Numerical response is the change in the number of predators with prey densities

• In 1959, a decade later, "Buzz" (C.S.) Holling is working on European sawflies (a pest of pine plantations) and small mammal predation on cocoons in Canada

• Inspired by Solomon, Holling publishes two foundational papers

293

XCI

THE CANADIAN ENTOMOLOGIST

The Components of Predation as Revealed by a Study of Small-Mammal Predation of the European Pine Sawfly¹

> By C. S. HOLLING Forest Insect Laboratory, Sault Ste. Marie, Ont.

The Canadian Entomologist

Vol. XCI Ottawa, Canada, July 1959 No. 7

Some Characteristics of Simple Types of Predation and Parasitism¹ By C. S. HOLLING Forest Insect Laboratory, Sault Ste. Marie, Ontario

- Inspired by Solomon, Holling publishes two foundational papers
- These papers do two important things:
 - 1) Holling formalizes the functional response

- Holling publishes two foundational papers
- These papers do two important things:
 - 1) Holling formalizes the functional response
 - 2) Holling shows how the functional response is something we can measure

- Holling publishes two foundational papers
- These papers do two important things:
 - 1) Holling formalizes the functional response
 - 2) Holling shows how the functional response is something we can measure
- Lasting effects:
 - 1) Holling Disc Equation remains the default functional response description
 - 2) Over 3,000 experiments have been performed to measure functional responses!

FUNCTIONAL RESPONSE

Mark Novak

FUNCTIONAL RESPONSE

Mark Novak

FUNCTIONAL RESPONSE 2 3

Mark Novak

How saturated are feeding rates in nature?

How saturated are feeding rates in nature?

Our approach – Bring together two databases

FoRAGE

Our approach – Bring together two databases

Mass-Abundance Scaling

$$I = \frac{f_I(R) - f_{II}(R)}{f_I(R)}$$

 $I = \frac{f_I(R) - f_{II}(R)}{R}$ $f_I(R)$

 $I = \frac{f_I(R) - f_{II}(R)}{R}$ $f_I(R)$

$$I = \frac{f_I(R) - f_{II}(R)}{f_I(R)}$$

$$I = \frac{f_I(R) - f_{II}(R)}{f_I(R)}$$

$$I = 1 - \frac{1}{1 + ahR}$$

$$I = \frac{f_I(R) - f_{II}(R)}{f_I(R)}$$

$$I = \frac{1 + ahR}{1 + ahR} - \frac{1}{1 + ahR}$$

$$I = \frac{f_I(R) - f_{II}(R)}{f_I(R)}$$

$$I = \frac{ahR}{1+ahR}$$

Count

• We live closer to the unsaturated world than the saturated world (in general)

• We live closer to the unsaturated world than the saturated world (in general)

- We live closer to the unsaturated world than the saturated world (in general)
- Where particular predators and prey fall on this spectrum depends on their qualities and how they interact

- We live closer to the unsaturated world than the saturated world (in general)
- Where particular predators and prey fall on this spectrum depends on their qualities and how they interact
- Approximating feeding rates using a linear relationship between feeding rates and prey densities might be fine in a lot of cases

Where is this work going in the future?

• We need more measurements of functional responses for predators that eat multiple prey species in the field

Where is this work going in the future?

- We need more measurements of functional responses for predators that eat multiple prey in the field
- What are the implications of unsaturation for predator-prey dynamics and stability?

Where is this work going in the future?

- We need more measurements of functional responses for predators that eat multiple prey in the field
- What are the implications of unsaturation for predator-prey dynamics and stability?
- Why are feeding rates unsaturated? Why have space clearance rates and handling times evolved to lead to unsaturated feeding rates?

Questions and Discussion

 $=\frac{T_{tax}}{1 + abx}$ у

Correlates with the Saturation Index?

Correlates with the Saturation Index? Prey Taxa

Correlates with the Saturation Index? Predator Taxa

Correlates with the Saturation Index? Habitat

Correlates with the Saturation Index? Interaction Dimension

Correlates with the Saturation Index? Prey Body Size

Correlates with the Saturation Index? Predator Body Size

